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The integral can be easily evaluated if we consider each of 
the N known atoms to be enclosed in a sphere of radius 
R and centred at Sn, the total volume enclosed being U. 
Then 

I exp{2~zi(p-h), x}.  dx = 

4zcR 3 N 
- -  Gr, v S exp{2rd(9-h).  S,~}, 

3 n = l  

where 

3 [sin (2rcHR) - (2rcHR) cos (2rcHR)] 
Ghp 

(2r~HR) 3 

and H =  1(9- h)l. 

Hence 

4rcR3 ZFhGhv 2; exp{2~ri(9-h). Sn} . 
I v -  3V h n=1 

(3) 

The equations (3) are of the same form as the molecular 
replacement equations, although there will be many more 
significant terms per equation owing to the slower decrease 

of G as H increases. They express the relationship between 
the structure factors Fh when part of the cell is of known 
structure. 

Now fp can be calculated and an initial solution of the 
phases of Fn can be found from the usual heavy-atom tech- 
niques. Improvement of these phases can then be made by 
the methods described in the paper by Main (1967) in order 
to achieve better satisfaction of equations (3). Hence the 
heavy-atom phases may be improved without any chemical 
knowledge. An application of these equations may there- 
fore be of help when a heavy atom is sufficiently weak not 
to permit easy recognition of chemical information, when 
resolution is too poor for recognition of chemical groups, 
or when approximate phases have been determined by 
means of poorly isomorphous derivatives. 
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The moments method in X-ray line-profile analysis described by Harrison yields automatically the so-called 
'particle-size' coefficients besides the deformation moments. Simple matrix inversion gives the deformation 
moments multiplied by the particle-size coefficient and, since the zero-order moment has to be equal to 
one, the particle size coefficient can be obtained directly. 

Harrison (1966) has described the possibility of determining 
the distribution of deformation on the basis of distortion 
coefficients obtained from X-ray diffraction lines. We should 
like to contribute to this work by showing that if we do not 
suppose that the deformation and particle-size coefficients 
have ah'eady been separated by some other method, then 
the moments method described by Harrison yields auto- 
matically the particle-size coefficients besides the deforma- 
tion moments. 

Using the notation of Harrison let us put down the 
Fourier coefficients of a diffraction line of a cubic crystal 
expanded by the deformation moments: 

_ , _  1 (2nhoL/a)2A~n(e~) A ,~ - A ,, -~. 

+ 1 (2r&oL/a)4A],(e4)  _ . . .  (1) 

B,, = - (2rchoL/a)A~ (eL) 

1, (2r&oL/a)3A~(e3z ) -  . . .  (2) + 
j l ,  

where <ekL) denotes the kth moment of deformation eL, 
index L denotes the averaging distance in the crystal, a is 
the length of the unit-cell edge in the direction of the dif- 
fraction and h~ = h2 + k2 + 12. 

Harrison (1966) has shown that if the particle-size co- 
efficients AS, are known, then by measuring a number of 

reflexions, say m, the deformation distribution can be deter- 
mined with the help of equation systems (1) and (2). 

Let us construct the vectors an and bn from the coeffi- 
cients An and Bn belonging to the same n suffixes but to 
different reflexions and the vectors ee and eo from the even 
and odd moments (e~ k) and (e~. k+x) (where k = 0 , 1 , 2 , . . .  
m - 1 ) .  Here we have supposed that the 2mth or higher 
deformation moments can be neglected. Let us further de- 
note the following square matrices of order m by Pn and Rn 

e n =  - ~ - .  . .  

1 (2z& ° L/a)  2 - ~ .  

l ( 2 n h ° L / a ) 3  i )  (4) Rn = - (2rchoL/a) -~. . .  

1 (2zrh0 L/a)  3 \ -  (2r&'o L/a)  -~. 

where each row of the matrix belongs to a certain reflexion, 
the rows being arranged in increasing order of the reflex- 
ions downward. 

The equation systems (1) and (2) can be written in the 
following form: 

a,~ = A~,Pnee (5) 
b,, = A~R,~eo . (6) 
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If  the Pn and Rn matrices are not singular they can be 
inverted and can be written 

P~-Xa. = A,~e, (7) 

Rn- 1 bn = A~e0. (8) 

Because the first element of vector e, is the zero-order 
moment  of eL (the matrix Pn has so been chosen) the first 
element of vector P~-aan defines the particle-size coefficients 
A',. So by computing the inverse of matrix Pn it is possible 
to determine the particle-size coefficients A,~ and the defor- 
mation moments (e~) at the same time. 

During the separation of particle-size and deformation 
coefficients it was supposed that the average crystal shape 
is spherical, e.g. that A,~ is independent of h0. If the particle 
shape cannot be supposed to be isotropic in this sense or if 

in case of anisotropy the explicit form of function A',fho) 
is unknown, the separation of particle-size and deformation 
coefficients has no physical meaning. 

Obviously if in equation (1) only second-order terms are 
considered, the method described for separating particle 
size and deformation coefficients is identical with Warren's  
(1959) method. 

The author wishes to thank Dr  L. Zsoldos for comments 
on the manuscript. 
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The moment method has previously been shown to yield the strain distribution in a crystal from measure- 
ments of broadened diffraction lines under the assumption that all broadening was due to strain. Ung~ir 
has pointed out that such an assumption is unnecessary, but his method involves sacrificing the determina- 
tion of the highest strain moment consistent with the number of experimentally measured diffraction 
orders. It is shown in the present paper that such a sacrifice can lead to serious error in certain cases. A 
simple scheme is described which extracts the maximum amount of information from the observed data 
to give both the strain distribution and the particle-size coefficient. 

In a previous paper (Harrison, 1966) it was shown that the 
strain distribution in a deformed crystal can be determined 
from measurements of broadened diffraction lines under 
the assumption that  no particle-size effects contribute to 
the broadening. Ung~ir (1967) has since pointed out that 
such an assumption is unnecessary, but his method, which 
leads to a determination of the 'particle-size' coefficient, 
does so at the expense of determining one of the high-order 
deformation moments. 

Summary of the previous methods 

Harrison employed the truncated expansions 

m 

a t = 1 + Z' P~,j (e 2J) 
j= l  

i =  1,2 . . . .  m 
m 

b~ = 27 R~d(e 2j-l) 
j = l  

m = number of 
observed diffraction 
orders 

to determine the deformation moments (e ~) of the strain 
distribution from the cosine and sine coefficients a; and b~ 
of the Fourier expansion of the broadened diffraction line 
(the dashes denoting that the coefficients are from a line 
broadened by strain alone). The matrix elements P~,j and 
R~.j are given by 

p~,j = ( -  1)J (2r~Lh~,o/a)2J 
(2j)! 

( -  1)J (27rLh,,ola)2j_ 1 
R , , j -  ( 2 j -  1)---------~ 

where 2 _  2 2 2 hi.o- hi + ki + It 
and the deformation moments are then computed by a pro- 
cess of matrix inversion to give 

m 

(e20= 2; PTaa(a; - 1) 
i = 1  

j =  1 ,2 , . . .  m 
m 

<e2J-a)= 27 Rhlb~ 
i = 1  

so that the first 2m moments may be obtained from meas- 
urements of m diffracted orders. 

Ung~ir waives assumptions about the sources of strain 
broadening and writes 

r a - -1  

at=A~+A~ X P~d(e 2j) 
j----1 

i = 1 , 2 , . . ,  m 
m 

b~= A~ 27 R~,j(e2J -1) 
jffil 

m = the number of 
observed diffraction 
orders 

where the m and b~ are the measured Fourier coefficients 
and A,~ is the particle size coefficient. The cosine expansion 
is now truncated at the ( 2 m - 2 ) t h  moment to enable A." 
to be calculated with the first m - 1  even moments from 
the m equations for m. The first m odd moments may then 
be calculated from the equations for the be. This method 


